55. Biosynthesis of the Spermine Alkaloid Aphelandrine

by Georgios Papazoglou, Jorge Sierra, Katharina Homberger, Armin Guggisberg, Wolf-Dietrich Woggon, and Manfred Hesse*

Organisch-chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(6.II.91)

Aphelandrine (1) is shown to be biosynthesized in the root cells of *Aphelandra tetragona* (VAHL) NEES from labelled putrescine (4), spermidine (5), and cinnamic acid (3). Whether spermine (6) and the (p-hydroxycinnamoyl) spermidine 8 are precursors of 1 is uncertain, since the latter is hydrolysed to a large extent before incorporation, and the former is metabolized to 4 and 5. Methionine (7) is the source of the 3-aminopropyl unit of 5 and 6.

Introduction. – The roots of several *Aphelandra* species have been found to contain aphelandrine (1) [1] as the major alkaloid (0.2% of dry weight). Structure elucidation by chemical degradation [2] revealed that 1 belongs to the quite rare class of macrocyclic spermine alkaloids [3]. The absolute configuration of the three chiral centers of 1 was determined by CD spectra in comparison to the diastereoisomeric orantine [4], and more recently by X-ray analysis of the perchlorate of 1 [5]. Nothing is known about the biosynthetic origin and the metabolism of spermine alkaloids like 1.

The structure of 1 is suggesting a biosynthetic pathway connecting building blocks like p-hydroxycinnamic acid (2), spermine (6), spermidine (5), and putrescine (4; Scheme 1). It certainly is of primary importance to establish optimal feeding methods in order to determine, whether 1 is synthesized 'de novo' from these simple precursors. Moreover, information is needed on the site of biosynthetic activity, and it would be of great advantage to identify 'later-stage' intermediates, like 8, which would provide insight into the reaction sequence of coupling these building blocks to the chiral macrocycle.

Results and Discussion. – After some unsuccessful attempts to feed precursors by roots to intact *Aphelandra tetragona* (VAHL) NEES, the 'cotton-wick' method proved to yield up to 0.13% incorporation of $[1,4^{-14}C_2,3',4^{-3}H_2]$ spermidine $([1,4^{-14}C_2,3',4^{-3}H_2]-5)$ into aphelandrine (1, see *Table 1, Entry 2*). $[3^{-14}C_1]$ Cinnamic acid $([3^{-14}C_1]-3; Entry 1)$, $[1,4^{-14}C_2,2,3^{-3}H_2]$ putrescine $([1,4^{-14}C_2,2,3^{-3}H_2]-4; Entry 4)$, and $[U^{-14}C]$ methionine ([U⁻¹⁴C]-7, Entry 6), were incorporated into 1 in rates of *ca*. 0.01%. The radioactive aphelandrine could be isolated exclusively from the roots, indicating good transport of the precursors in the stem and, moreover, suggesting that the roots of *A. tetragona* contain the only biosynthetic active cells concerning the formation of 1. This result is supported by the already established fact, that aphelandrine is found in a ratio of *ca*. 30:1 in the roots and in the green parts of *A. tetragona*, respectively [6].

In most cases, doubly labelled precursors were applied, since no suitable degradation methods of 1 are available in order to localize the label, and it was reasoned that the

Scheme 1. Schematic Representation of the Results of the Incorporation Experiments

retention of ${}^{3}\text{H}/{}^{14}\text{C}$ would be sufficient to prove a specific incorporation. As expected, doubly labelled putrescine $[1,4-{}^{14}\text{C}_2,2,3-{}^{3}\text{H}_2]$ -4 was incorporated into 1 with retention of ${}^{3}\text{H}/{}^{14}\text{C}$ (*Table 1, Entry 4*). However, depending on feeding conditions, $\leq 47\%$ of the ${}^{3}\text{H}$ -label was lost, when the spermidine $[1,4-{}^{14}\text{C}_2,3',4-{}^{3}\text{H}_2]$ -5 was converted to aphelandrine (1). At first sight, this result seems quite puzzling, but subsequent experiments of the metabolism of the polyamines in *A. tetragona* provide a reasonable interpretation, *vide infra.*

To investigate the metabolism of 1 and its possible biosynthetic precursors 4-6, the green parts and the roots of *A. tetragona* were separately and quantitatively analyzed *i*) for metabolites of 1, after feeding [${}^{3}H, {}^{14}C$]-1, originating from earlier biosynthetic experiments, and *ii*) for the polyamines 4-6, after application of [1,4- ${}^{14}C_{2}, 3', 4-{}^{3}H_{2}$]-5, [2,3- ${}^{3}H_{2}$]-4, [U- ${}^{14}C$]-7, and a mixture of [3',4- ${}^{3}H_{2}$]-5 and [1,4- ${}^{14}C_{2}$]-6. It could be clearly

Entry	Precursor	Time of	³ H/ ¹⁴ C Ra	tio of	Incorporation rate [%]		
		exposure [days]	precursor	1	³ H	¹⁴ C	
1		16	1.0	10.22	0.102	0.01	
	[2,3- ³ H ₂]-4						
	CO ⁺						
	[3- ¹⁴ C]- 3						
2		22 3	2.0 3.53	1.06 2.2	0.07 0.004	0.13 0.006	
	NH ₂	21	3.53	2.37	0.026	0.034	
	[1,4- ¹⁴ C ₂ ,3',4- ³ H ₂]-5						
3		22	2.4	3.40	0.126	0.093	
	[1,4- ⁽⁴ C ₂]-6						
	$[3', 4^{-3}H_{2}]-5$						
4	H ₂ N NH ₂	14	1.0	1.096	0.0107	0.0098	
	T {1.4- ¹⁴ C ₂ ,2,3- ³ H ₂ }-4						
5	ОН	13	5.97	46.75	0.0087	0.0011	
	\bigcirc						
	[2- ¹⁴ C,3",4'- ³ H ₂]-8						
6	∽ S ↓ ĊO₂H NH₂	14	-	-		0.012	
	[U- ¹⁴ C]-7						
7	ОН	7	_		_	0.0008	
	\bigcirc	14	-		_	0.0015	
	Со ₂ н [2- ¹⁴ C] -2						

Table 1. Incorporation of Labelled Precursors into Aphelandrine (1) in Aphelandra tetragona

Entry		Precursor				Polyamines isolated from the stem						
		time of exposure [days]	total activity		³ H/ ¹⁴ C	total activity ×10 ⁵ [dpm]			³ H/ ¹⁴ C			
			×	<10° [dpm]		4	4	5	6	4	5	6
1		16	³Н	5.55	1.0	ЗН	21.9	3.13	2.13			
	[2,3- ³ H ₂]-4 +		¹⁴ C	5.55		¹⁴ C	-	_	-			
	[3- ¹⁴ C]-3											
2		22	³ H	2.22	3	ЗН	5.22	1.45	0.28	1.24	1.21	1.49
	NH ₂		¹⁴ C ³ H	1.11 4.73		¹⁴ C ³ H	4.22 23.96	1.20 1.56	0.19 0.37			
	[1,4- ¹⁴ C ₂ ,3',4- ³ H ₂]-5	3	¹⁴ C	1.34	3.53	¹⁴ C	10.43	0.54	0.15	2.29	2.88	2.47
		21	ЗН	4.73	3.53	ЗН	4.59	0.67	0.31	2.40	2.69	2.71
			¹⁴ C	1.34		¹⁴ C	1.91	0.25	0.12			
3		22	³ H	2.664	2.40	°H	15.90	8.92	11.00	2.91	3.32	4.09
	[1,4- ¹⁴ C ₂]-6		чС	1.11		чС	5.48	2.68	2.69			
	HN T T (3',4- ³ H ₃)-5											
4	✓ S ✓ ✓ ĊO₂H NH₂ [U- ¹⁴ C]-7	14	¹⁴ C	1.24		¹⁴ C	0.36	0.06	0.1			
5	он I	12	³ H	10.17	5.07	³ H	3.50	4.90	2.52			
		13	¹⁴ C	1.70	5.97	¹⁴ C	_	_	_	_		_
	[2- ¹⁴ C,3",4'- ³ H ₂]-8											

Table 2. Polyamine Metabolism in Aphelandra tetragona

shown that 1 is not metabolized in the green parts of *A. tetragona*; moreover, 1 seems not to be transported in its free form from the stem to the roots.

In contrast, the polyamines are metabolized in the stem of *A. tetragona*. After application of $[1,4^{-14}C_2,3',4^{-3}H_2]$ spermidine ($[1,4^{-14}C_2,3',4^{-3}H_2]$ -5), doubly labelled spermine (6), spermidine (5), and putrescine (4) could be isolated after dilution with non-radioactive reference compounds and counted as their pure 4-bromobenzamides (see *Exper. Part*). The remarkable change of the ³H/¹⁴C ratio (see *Table 2*) indicates the loss of the ³H-labelled 3-aminopropyl group from 5 to give putrescine 4 (32–38% ³H-loss), which is subsequently alkylated by methionine (7) to give spermidine (5) and spermine (6). The alkylation of 4 to produce 5 and 6 is known from other organisms [7] and also established in the stem of *A. tetragona* by feeding [U-¹⁴C]methionine ([U-¹⁴C]-7; see *Table 2*).

The change of ${}^{3}H/{}^{4}C$ in the polyamine metabolism is not exactly reproducible even when the plants were harvested within the same time after feeding $[1,4^{-14}C_2,3',4^{-3}H_2]$ -5. Consequently, no conclusions can be drawn from these experiments with regard to the relative rates of interconversion $4\rightarrow 5\rightarrow 6$. However, is its firmly established that the 3-aminopropyl unit is easily added and removed biosynthetically from the polyamines. It is also obvious from the competitive feeding experiment with spermine/spermidine that spermine (6) is a less efficient precursor for aphelandrine (1) compared to putrescine (4) and spermidine (5). From the change of the ${}^{3}H/{}^{14}C$, it seems that 6 is prone to oxidative cyclization to give 9 and 10 (*Scheme 1*) [8] rather than being incorporated into 1 or metabolized to 4 and 5.

It follows that at present there is no unequivocal proof, that spermine (6) is a biosynthetic precursor of aphelandrine (1). It seems even possible, that the second 3-aminopropyl group, necessary for the construction of the spermine macrocycle is only added after condensation of spermidine (5) with *p*-hydroxycinnamic acid (2). In order to test this hypothesis hydroxy[2-¹⁴C₁]cinnamic acid ([2-¹⁴C₁]-2) was prepared following the procedure of *Humora* and *Quick* [9] and condensed with the doubly protected ³H-labelled spermidine [³H₂]-11 to furnish the amide [¹⁴C, ³H₂]-12. Subsequent hydrazinolysis of the protecting groups afforded the desired doubly labelled amide [2-¹⁴C₁, 3″, 4′-³H₂]-8 [10] (*Scheme 2*). After feeding of the latter spermidine derivative to *A. tetragona*, the polyamines 4–6 were isolated and found to be only ³H-labelled, whereas aphelandrine (1) was doubly labelled, however, displaying an eigth-fold increase of ³H/¹⁴C compared to the precursor.

Since the incorporation of the ³H- and ¹⁴C-label of **8** into **1** are of the same order as for p-hydroxy[2-¹⁴C₁]cinnamic acid ([2-¹⁴C₁]-**2**) and [3',4-³H₂]spermidine ([3',4-³H₂]-**5**), when these compounds were administered to *A. tetragona* in separate experiments, it is quite intriguing to assume efficient hydrolysis of the amide bond of **8** in the stem of the plant much before the compound can reach its destination in the roots of *A. tetragona*.

The incorporation rates of p-hydroxycinnamic acid (2; 0.001%) and cinnamic acid (3; 0.01%) are quite low and differ from each other by a factor of ten. Possible explanations are as follows: the lower incorporation of 2 in comparison to 3 may be due to the fact that 3 is hydroxylated after the formation of an intermediate amide conjugate. On the other hand, the transport of the hydroxylated compound 2 may be less efficient.

Since it is not possible to explain the changes of ${}^{3}\text{H}/{}^{14}\text{C}$ ratio during the transformation of certain precursors into aphelandrine (1), the original assumption that feeding doubly labelled precursors would be sufficient to prove a specific incorporation is not

valid in some cases. Consequently, chemical degradations for 1 must be developed. Stable isotope techniques should be applied, if incorporation rates could be enhanced using tissue cultures. This technique would be also of advantage concerning a possible fluctuation of the biosynthetic activity in a years circle of *A. tetragona* [11].

We thank the members of our analytical laboratories (microanalysis, MS, NMR, and isotope lab) for their service and the *Swiss National Science Foundation* for financial support. We are very thankful to *Gärtnerei Weber* AG, CH-5416 Kirchdorf, for cultivating Aphelandra plants.

Experimental Part

Plants and Radiochemicals. Aphelandra tetragona (VAHL) NEES, 3-15-weeks old, were commerically available. $[1,4.^{14}C_2]$ Spermine $([1,4.^{14}C_2]-6)$ and $[3.^{14}C_1]$ cinnamic acid $([3.^{14}C_1]-3)$ were obtained from Amersham Radiochemi-

cals, England. $[3',4^{-3}H_2]$ Spermidine $([3',4^{-3}H_2]^{-5})$, $[1,4,^{-14}C_2]$ spermine $([1,4^{-14}C_2]^{-6})$, $[2,3^{-3}H_2]$ putrescine $([2,3^{-3}H_2]^{-4}$, $[1,4^{-14}C_2]$ putrescine $([1,4^{-14}C_2]^{-4})$, $[U^{-14}C_2]$ putrescine $([1,4^{-14}C_2]^{-4})$, $[U^{-14}C_2]$ putrescine $([1,4^{-14}C_2]^{-4})$, $[U^{-14}C_2]^{-4}$, $[U^$

Feeding Experiments. A H_2O soln. of the labelled compounds was administered near the base of the stem using the 'cotton-wick' method. In general, the precursors were taken up by the plant within 24 h after 2–22 days (see *Tables 1* and 2), the plants were harvested, and the roots, stem, and leaves lyophilized separately.

Extraction and Purification of 1 and the Polyamines 4, 5, and 6. After adding unlabelled aphelandrine (1), the lyophilized parts of A. tetragona were exhaustively extracted with 5% AcOH/MeOH. The extract was evaporated at $40^{\circ}/0.01$ Torr, toluene was added, evaporated again, and the residue finally dissolved in 0.25 M HCl. After extraction with hexane and Et₂O, the aq. layer was adjusted to pH 9.5 and extracted with CHCl₃. To isolate 1, the CHCl₃ extract was dried (Na₂SO₄), evaporated, and the residue chromatographed twice on prep. TLC (CHCl₃/MeOH/NH₄OH 7:7:1 and 78:19:3) yielding 1 which was crystallized from MeOH/H₂O to constant specific activity. To isolate **4-6**, the basic aq. layer was concentrated to 2 batches of 100 and 50 ml, and aliquots diluted with 0.1 mmol of each polyamine **4**, **5**, and **6**. Subsequently, 4-bromobenzoyl chloride/2m NaOH was added to each probe and the resulting 4-bromobenzamides were isolated by prep. TLC (CHCl₃/MeOH 9:1 and 19:1) and crystallized from MeOH/H₂O to constant specific activity. Incorporation rates are given in % of the total activity administered by the 'cotton-wick' method.

N-(4-Amino[$4^{-3}H_1$]butyl)-N-(3-amino[$3^{-3}H_1$]propyl)-3-(4-hydroxyphenyl)[$2^{-14}C$]prop-2-enamide ([$2^{-14}C_1$, 3",4'- $^{3}H_2$]-8). According to [10], N- {4-{3-(phthalimido)[$3^{-3}H_1$]propylamino}][$1^{-3}H_1$]butyl}phthalimide ([$^{3}H_2$]-11) was prepared in 80% yield from 1 mCi (16.34 mCi/mmol) of [$3',4^{-3}H_2$]spermidine ([$3',4^{-3}H_2$]-5). Subsequent addition of 0.13 mCi (4.76 mCi/mmol) of 4-hydroxy[$2^{-14}C_1$]cinnamic acid ([$2^{-14}C_1$]-2) to a soln. of [$^{3}H_2$]-11 in THF in the presence of dicyclohexylcarbodiimid (DCC) gave in 73% yield N- {4-{3-(4-hydroxyphenyl)-N-{3-(phthalimido)[$3^{-3}H_1$]propyl}][$2^{-14}C_1$ [prop-2-enamido][$1^{-3}H_1$]butyl}phthalimide ([$^{14}C, {}^{3}H_2$]-12) as a (E/Z)-mixture. Deprotection by hydrazine hydrat in EtOH [10] yielded [$2^{-14}C_1, 3", 4'^{-3}H_2$]-8 which was isolated and purified as its dioxalate; ${}^{3}H/{}^{14}C = 5.97$. Compounds [$^{3}H_2$]-11, [$^{14}C_1, {}^{3}H_2$]-12, and [$2^{-14}C_1, {}^{3}, {}^{4'-3}H_2$]-8 were identified by comparison with authentic samples originating from a synthesis with non-labelled material IR (KBr; measured as dioxalate): 3400 (br.), 3000 (br.), 1640, 1605, 1585, 1515, 1465, 1380, 1260, 1225, 1165, 1155, 980, 830. ¹H-NMR (CD_3OD; free base): 7.63-6.68 (m, 6 H); 4.86 (OH); 3.71-3.50 (m, 4 H); 3.35-3.29 (4 NH); 3.03-2.93 (m, 4 H); 2.07-1.69 (m, 6 H). ¹³C-NMR ((CD_6)DMSO; free base): 170.86, 170.61, 168.28, 167.95, 156.42, 156.37 (6s); 38.44, 35.46, 31.43, 29.78, 29.74, 29.62, 29.59, 29.52, 29.49, 28.45, 28.18, 27.55, 26.75, 26.56, 25.68, 25.41 (22t). CI-MS: 292 ([M + 1]⁺).

REFERENCES

- [1] H. Bosshardt, A. Guggisberg, S. Johne, M. Hesse, Pharm. Acta Helv. 1978, 53, 355.
- [2] P. Dätwyler, H. Bosshardt, H.O. Bernhard, M. Hesse, Helv. Chim. Acta 1978, 61, 2646.
- [3] A. Guggisberg, M. Hesse, in 'The Alkaloids', Ed. A. Brossi, Academic Press Inc., New York, 1983, Vol. 22, p. 85-188.
- [4] P. Dätwyler, H. Bosshardt, S. Johne, M. Hesse, Helv. Chim. Acta 1979, 62, 2712.
- [5] A. Guggisberg, R. Prewo, M. Hesse, Helv. Chim. Acta 1986, 69, 1012.
- [6] G. Papazoglou, Ph. D. Thesis, Universität Zürich, 1990.
- [7] T.A. Smith, Biochem. Biophys. Res. Commun. 1970, 41, 1452; E. Leete, Phytochemistry 1985, 24, 957; J. Negrel, *ibid.* 1989, 28, 477; T.A. Smith, in 'Encyclopedia of Plant Physiology', Eds. E.A. Bell and B.V. Charlwood, Springer Verlag, Berlin, 1980, Vol. 8, p.8.
- [8] T.A. Smith, Phytochemistry 1972, 11, 899; S.J. Croker, R.S.T. Loeffler, T.A. Smith, R.B. Sessions, Tetrahedron Lett. 1983, 24, 1559.
- [9] M. Humora, J. Quick, J. Org. Chem. 1979, 44, 1166.
- [10] G. Sosnovsky, J. Lukszo, Z. Naturforsch., B 1986, 41, 122.
- [11] A. Lorenzi-Riatsch, M. Hesse, to be published; W. Fiedler, A. Lorenzi-Riatsch, M. Hesse, Planta Med. 1990, 56, 493.